Bibliography on larval excretion/secretion (LES)
Abdel-Samad, M. R. K. (2019). Antiviral and virucidal activities of Lucilia cuprina maggots’ excretion/secretion (Diptera: Calliphoridae): first work. Heliyon, 5(11), e02791. https://doi.org/10.1016/j.heliyon.2019.e02791
Abdel-Samad, M. R. K., Taher, F. A., Shehata, M., Shama, N. M. A., Mostafa, A., Ali, M. A., & Ibrahim, I. H. (2022). Strong anti-SARS-CoV-2 activity of Lucilia cuprina maggots’ excretion/secretion and its effect on viral entry and notch pathway in vitro: First work. Journal of Applied Pharmaceutical Science, 12,(7), 122–130. https://doi.org/10.7324/JAPS.2022.120713
Abdel-Samad, M. R., & Taher, F. A. (2021). Wound healing and antibacterial activities of water-soluble chitosan nanoparticles and excretion/secretion as a natural combination from medicinal maggots, Lucilia cuprina. Journal of Bioactive and Compatible Polymers, 36(6), 510–519. https://doi.org/10.1177/08839115211053921
Alipour, H., Raz, A., Dinparast Djadid, N., & Zakeri, S. (2019). Expression of a New Recombinant Collagenase Protein of Lucilia Sericata in SF9 Insect Cell as a Potential Method for Wound Healing. Iranian Journal of Biotechnology, 17(4), e2429. https://doi.org/10.30498/IJB.2019.92707
Alipour, H., Raz, A., Zakeri, S., & Dinparast Djadid, N. (2016). Therapeutic applications of collagenase (metalloproteases): A review. Asian Pacific Journal of Tropical Biomedicine, 6(11), 975–981. https://doi.org/10.1016/j.apjtb.2016.07.017
Armstrong, D. G., Rowe, V. L., D’Huyvetter, K., & Sherman, R. A. (2020). Telehealth‐guided home‐based maggot debridement therapy for chronic complex wounds: Peri‐ and post‐pandemic potential. International Wound Journal, 17(5), 1490–1495. https://doi.org/10.1111/iwj.13425
Aubernon, C., Hedouin, V., & Charabidze, D. (2019). The maggot, the ethologist and the forensic entomologist: Sociality and thermoregulation in necrophagous larvae. Journal of Advanced Research, 16, 67–73. https://doi.org/10.1016/j.jare.2018.12.001
Babe, L. M., Goedegebuur, F., Ghirnikar, R., Gu, X., Kolkman, M., & Yao, J. (2020). Metalloproteases (Patent 10696958). https://patents.google.com/patent/US10696958B2/en?oq=10696958
Barnes, K. M., Gennard, D. E., & Dixon, R. A. (2010). An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. Bulletin of Entomological Research, 100(6), 635–640. https://doi.org/10.1017/S000748530999071X
Bexfield, A., Bond, A. E., Morgan, C., Wagstaff, J., Newton, R. P., Ratcliffe, N. A., Dudley, E., & Nigam, Y. (2010). Amino acid derivatives from Lucilia sericata excretions/secretions may contribute to the beneficial effects of maggot therapy via increased angiogenesis. The British Journal of Dermatology, 162(3), 554–562. https://doi.org/10.1111/j.1365-2133.2009.09530.x
Bexfield, A., Bond, A. E., Roberts, E. C., Dudley, E., Nigam, Y., Thomas, S., Newton, R. P., & Ratcliffe, N. A. (2008). The antibacterial activity against MRSA strains and other bacteria of a <500Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes and Infection, 10(4), 325–333. https://doi.org/10.1016/j.micinf.2007.12.011
Bexfield, A., Nigam, Y., Thomas, S., & Ratcliffe, N. A. (2004). Detection and partial characterization of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes and Infection, 6(14), 1297–1304. https://doi.org/10.1016/j.micinf.2004.08.011
Bian, H., Yang, Q., Ma, T., Li, W., Duan, J., Wei, G., Wu, X., Mu, F., Lin, R., Wen, A., & Xi, M. (2017). Beneficial effects of extracts from Lucilia sericata maggots on burn wounds in rats. Molecular Medicine Reports, 16(5), 7213–7220. https://doi.org/10.3892/mmr.2017.7566
Blenkiron, C., Tsai, P., Brown, L. A., Tintinger, V., Askelund, K. J., Windsor, J. A., & Phillips, A. R. (2015). Characterization of the small RNAs in the biomedically important green-bottle blowfly Lucilia sericata. PloS One, 10(3), e0122203. https://doi.org/10.1371/journal.pone.0122203
Bohova, J., Majtan, J., Majtan, V., & Takac, P. (2014). Selective Antibiofilm Effects of Lucilia sericata Larvae Secretions/Excretions against Wound Pathogens. Evidence-Based Complementary and Alternative Medicine, 2014, 1–9. https://doi.org/10.1155/2014/857360
Brown, A. W. A. (1936). The Excretion of Ammonia and Uric Acid During The Larval Life of Certain Muscoid Flies. Journal of Experimental Biology, 13(2), 131–139. https://doi.org/10.1242/jeb.13.2.131
Cazander, G., Pritchard, D. I., Nigam, Y., Jung, W., & Nibbering, P. H. (2013). Multiple actions of Lucilia sericata larvae in hard-to-heal wounds: Larval secretions contain molecules that accelerate wound healing, reduce chronic inflammation and inhibit bacterial infection. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 35(12), 1083–1092. https://doi.org/10.1002/bies.201300071
Cazander, G., van de Veerdonk, M. C., Vandenbroucke-Grauls, C. M. J. E., Schreurs, M. W. J., & Jukema, G. N. (2010). Maggot excretions inhibit biofilm formation on biomaterials. Clinical Orthopaedics and Related Research, 468(10), 2789–2796. https://doi.org/10.1007/s11999-010-1309-5
Cazander, G., van Veen, K. E. B., Bernards, A. T., & Jukema, G. N. (2009). Do maggots have an influence on bacterial growth? A study on the susceptibility of strains of six different bacterial species to maggots of Lucilia sericata and their excretions/secretions. Journal of Tissue Viability, 18(3), 80–87. https://doi.org/10.1016/j.jtv.2009.02.005
Cazander, G., van Veen, K. E. B., Bouwman, L. H., Bernards, A. T., & Jukema, G. N. (2009). The influence of maggot excretions on PAO1 biofilm formation on different biomaterials. Clinical Orthopaedics and Related Research, 467(2), 536–545. https://doi.org/10.1007/s11999-008-0555-2
Constable, S. A. (1994). A Comparison of Proteases Produced by Larvae of Lucilia cuprina (Wiedemann), L. sericata (Meigen), Calliphora augur (F.) and C. stygia (F.) (Diptera: Calliphoridae). Australian Journal of Entomology, 33(3), 203–210. https://doi.org/10.1111/j.1440-6055.1994.tb01218.x
Cuervo, P., Mesquita-Rodrigues, C., d’Avila Levy, C. M., Britto, C., Pires, F. A., Gredilha, R., Alves, C. R., & Jesus, J. B. de. (2008). Serine protease activities in Oxysarcodexia thornax (Walker) (Diptera: Sarcophagidae) first instar larva. Memórias Do Instituto Oswaldo Cruz, 103(5), 504–506. https://doi.org/10.1590/S0074-02762008000500018
Cupp, M. S., Zhang, D., & Cupp, E. W. (2005). Protein from horn fly saliva that disrupts hemostasis (Canada Patent CA2546665A1). https://patents.google.com/patent/CA2546665A1/en
Daeschlein, G., Mumcuoglu, K. Y., Assadian, O., Hoffmeister, B., & Kramer, A. (2007). In vitro Antibacterial Activity of Lucilia sericata Maggot Secretions. Skin Pharmacology and Physiology, 20(2), 112–115. https://doi.org/10.1159/000097983
Davis, R. J., Belikoff, E. J., Dickey, A. N., Scholl, E. H., Benoit, J. B., & Scott, M. J. (2021). Genome and transcriptome sequencing of the green bottle fly, Lucilia sericata, reveals underlying factors of sheep flystrike and maggot debridement therapy. Genomics, 113(6), 3978–3988. https://doi.org/10.1016/j.ygeno.2021.10.003
Díaz-Roa, A., Patarroyo, M. A., Bello, F. J., & Da Silva, P. I. (2018). Sarconesin: Sarconesiopsis magellanica Blowfly Larval Excretions and Secretions With Antibacterial Properties. Frontiers in Microbiology, 9. https://www.frontiersin.org/article/10.3389/fmicb.2018.02249
Durdle, A., Mitchell, R. J., & van Oorschot, R. A. H. (2016). The Food Preferences of the Blow Fly Lucilia cuprina Offered Human Blood, Semen and Saliva, and Various Nonhuman Foods Sources. Journal of Forensic Sciences, 61(1), 99–103. https://doi.org/10.1111/1556-4029.12912
El-Bassiony, G., & Stoffolano, J. (2016). In vitro antimicrobial activity of maggot excretions/secretions of Sarcophaga (Liopygia) argyrostoma (Robineau-Desvoidy). African Journal of Microbiology Research, 10, 1036–1043. https://doi.org/10.5897/AJMR2016.8102
Eltablawy, S. Y., & Amin, M. M. (2011). Evaluation of Anti-adherent Activity of Excretions of Irradiated Lucilia sericata Maggot and Certain Essential Oils against Some Pathogenic Bacterial Strains. Egyptian Journal of Radiation Sciences and Applications, 24(1), 117–128. https://doi.org/10.21608/ejrsa.2011.1459
Evans, R., Dudley, E., & Nigam, Y. (2015). Detection and partial characterization of antifungal bioactivity from the secretions of the medicinal maggot, Lucilia sericata. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 23(3), 361–368. https://doi.org/10.1111/wrr.12287
Fairlamb, D. M., Kelety, B., Bachert, A., Scholtissek, A., Jones, R. D., Davis, S. C., & Kirsner, R. S. (2023). Preliminary evidence supporting a new enzymatic debridement product for use in chronic wounds. International Wound Journal, 20(6), 2095–2104. https://doi.org/10.1111/iwj.14079
Fleischmann, W. (2003). Method and device for rearing insects, especially for obtaining a secretion from fly larvae for therapeutic application (Patent 6557487). https://patents.google.com/patent/US6557487B1/en?oq=6557487
Fleischmann, W. (2005). Method and device for rearing insects, especially for obtaining secretion from fly larvae for therapeutic application (Patent 6863022). https://patents.google.com/patent/US6863022B2/en?oq=6863022
Frank, G. R., Hunter, S. W., & Wallenfels, L. (1999). Ectoparasite saliva proteins and apparatus to collect such proteins (Patent 5927230). https://patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN%2F5927230
Franta, Z., Vogel, H., Lehmann, R., Rupp, O., Goesmann, A., & Vilcinskas, A. (2016). Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots. BioMed Research International, 2016, 8285428. https://doi.org/10.1155/2016/8285428
Garzon, L. R., Fracasso, M., Viana, A. R., Giacometi, M., Samoel, G. V. A., Souza, L., Baldissera, M. D., Petry, L. dos S., Krause, L. M. F., & Monteiro, S. G. (2021). Atividade in vitro da secreção de Lucilia cuprina frente à Leishmania amazonensis, Ttrypanosoma cruzi e linhagens celulares / In vitro activity of larval secretions from Lucilia cuprina against Leishmania amazonensis, Trypanosoma cruzi and cell lines. Brazilian Journal of Development, 7(8), 82837–82858. https://doi.org/10.34117/bjdv7n8-475
Gasz, N. E., Geary, M. J., Doggett, S. L., & Harvey, M. L. (2021). Bacterial association observations in Lucilia sericata and Lucilia cuprina organs through 16S rRNA gene sequencing. Applied Microbiology and Biotechnology, 105(3), 1091–1106. https://doi.org/10.1007/s00253-020-11026-8
Gazi, U., Taylan‐Ozkan, A., & Mumcuoglu, K. Y. (2021). The effect of Lucilia sericata larval excretion/secretion ( ES ) products on cellular responses in wound healing. Medical and Veterinary Entomology, 35(3), 257–266. https://doi.org/10.1111/mve.12497
Giacaman, A. G., Styliari, I. D., Taresco, V., Pritchard, D., Alexander, C., & Rose, F. R. A. J. (2022). Development of bioactive electrospun scaffolds suitable to support skin fibroblasts and release Lucilia sericata maggot excretion/secretion. SN Applied Sciences, 4(12), 331. https://doi.org/10.1007/s42452-022-05209-3
Giglioti, R., Guimarães, S., Oliveira-Sequeira, T. C. G., David, E. B., Brito, L. G., Huacca, M. E. F., Chagas, A. C. S., & Oliveira, M. C. S. (2016). Proteolytic activity of excretory/secretory products of Cochliomyia hominivorax larvae (Diptera: Calliphoridae). Pesquisa Veterinária Brasileira, 36(8), 711–718. https://doi.org/10.1590/S0100-736X2016000800006
Gomes, G., Köberle, R., Von Zuben, C. J., & Andrade, D. V. (2018). Droplet bubbling evaporatively cools a blowfly. Scientific Reports, 8(1), Article 1. https://doi.org/10.1038/s41598-018-23670-2
Harris, L. G. (2009). Disruption of Staphylococcus epidermidis biofilms by medicinal maggot Lucilia sericata excretions/secretions (Patent US20110008402A1). https://patents.google.com/scholar/10449277235929420400
Harris, L. G., Bexfield, A., Nigam, Y., Rohde, H., Ratcliffe, N. A., & Mack, D. (2009). Disruption of Staphylococcus Epidermidis Biofilms by Medicinal Maggot Lucilia Sericata Excretions/Secretions. The International Journal of Artificial Organs, 32(9), 555–564. https://doi.org/10.1177/039139880903200904
Hassan, M. I., Amer, M. S., Hammad, K. M., & Zidan, M. M. (2016). Antimicrobial Activity for Excretion and Secretion of the Greenbottle Fly Larvae Lucilia Sericata (meigen) (diptera: Calliphoridae). Journal of the Egyptian Society of Parasitology, 46(1), 179–184. https://doi.org/10.12816/0026163
Honda, K. (2008). Defensive potential of components of the larval osmeterial secretion of papilionid butterflies against ants. Physiological Entomology, 8, 173–179. https://doi.org/10.1111/j.1365-3032.1983.tb00346.x
Honda, K., Okamoto, K., Mochida, Y., Ishioka, K., Oka, M., Maesato, K., Ikee, R., Moriya, H., Hidaka, S., Ohtake, T., Doi, K., Fujita, T., Kobayashi, S., & Noiri, E. (2011). A novel mechanism in maggot debridement therapy: Protease in excretion/secretion promotes hepatocyte growth factor production. American Journal of Physiology-Cell Physiology, 301(6), C1423–C1430. https://doi.org/10.1152/ajpcell.00065.2011
Horobin, A. J., Shakesheff, K. M., & Pritchard, D. I. (2005). Maggots and wound healing: An investigation of the effects of secretions from Lucilia sericata larvae upon the migration of human dermal fibroblasts over a fibronectin-coated surface. Wound Repair and Regeneration, 13(4), 422–433. https://doi.org/10.1111/j.1067-1927.2005.130410.x
Huberman, L., Gollop, N., Mumcuoglu, K. y., Block, C., & Galun, R. (2007). Antibacterial properties of whole body extracts and haemolymph of Lucilia sericata maggots. Journal of Wound Care, 16(3), 123–127. https://doi.org/10.12968/jowc.2007.16.3.27011
Isabela Avila-Rodríguez, M., Meléndez-Martínez, D., Licona-Cassani, C., Manuel Aguilar-Yañez, J., Benavides, J., & Lorena Sánchez, M. (2020). Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomedical Reports, 13(1), 3–14. https://doi.org/10.3892/br.2020.1300
Jafari, A., Babajani, A., Sarrami Forooshani, R., Yazdani, M., & Rezaei-Tavirani, M. (2022). Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Frontiers in Oncology, 12. https://www.frontiersin.org/article/10.3389/fonc.2022.819563
Jiang, K., Sun, X., Wang, W., Liu, L., Cai, Y., Chen, Y., Luo, N., Yu, J., Cai, D., & Wang, A. (2012). Excretions/secretions from bacteria-pretreated maggot are more effective against Pseudomonas aeruginosa biofilms. PloS One, 7(11), e49815. https://doi.org/10.1371/journal.pone.0049815
Johnson, A. P., & Wallman, J. F. (2014). Effect of massing on larval growth rate. Forensic Science International, 241, 141–149. https://doi.org/10.1016/j.forsciint.2014.05.006
Jukema, G. N., Wai, S., Dogterom-ballering, H. C. M., Lagendijk, E. L., Gulpen, C. V., Dissel, J. T. V., Bloemberg, G. V., & Nibbering, P. H. (2008). Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas.
Kahl, M., Gökçen, A., Fischer, S., Baeumer, M., Wiesner, J., Lochnit, G., Wygrecka, M., Vilcinskas, A., & Preissner, K. (2015). Maggot excretion products from the blowfly Lucilia sericata contain contact phase/intrinsic pathway-like proteases with procoagulant functions. Thrombosis and Haemostasis, 114. https://doi.org/10.1160/TH14-06-0499
Kawamura, M., Wadano, A., & Miura, K. (1984). Purification and some properties of cathepsin-like thiol protease from pupae of the blowfly Aldrichina grahami. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 78(1), 279–286. https://doi.org/10.1016/0305-0491(84)90183-4
Kerridge, A., Lappin-Scott, H., & Stevens, J. R. (2005). Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Medical and Veterinary Entomology, 19(3), 333–337. https://doi.org/10.1111/j.1365-2915.2005.00577.x
Kruglikova, A. A., & Chernysh, S. I. (2011). Antimicrobial compounds from the excretions of surgical maggots, Lucilia sericata (Meigen) (Diptera, Calliphoridae). Entomological Review, 91(7), 813–819. https://doi.org/10.1134/S0013873811070013
Lancu, L., Angelescu, I. R., Paun, V. I., Henríquez-Castillo, C., Lavin, P., & Purcarea, C. (2021). Microbiome pattern of Lucilia sericata (Meigen) (Diptera: Calliphoridae) and feeding substrate in the presence of the foodborne pathogen Salmonella enterica. Scientific Reports, 11(1), 15296. https://doi.org/10.1038/s41598-021-94761-w
Leber, T. M., & Balkwill, F. R. (1997). Zymography: A Single-Step Staining Method for Quantitation of Proteolytic Activity on Substrate Gels. Analytical Biochemistry, 249(1), 24–28. https://doi.org/10.1006/abio.1997.2170
Lema, C., Baidouri, H., Sun, M., Pohl, S., Cookson, S., Redfern, R., & McDermott, A. M. (2022). Anti-inflammatory and wound healing potential of medicinal maggot excretions/secretions at the ocular surface. The Ocular Surface. https://doi.org/10.1016/j.jtos.2022.09.003
Li, X., Liu, N., Xia, X., Zhang, S., Bai, J., & Wang, J. (2013). The Effects of Maggot Secretions on the Inflammatory Cytokines in Serum of Traumatic Rats. African Journal of Traditional, Complementary, and Alternative Medicines, 10(4), 151–154.
Linger, R. J., Belikoff, E. J., Yan, Y., Li, F., Wantuch, H. A., Fitzsimons, H. L., & Scott, M. J. (2016). Towards next generation maggot debridement therapy: Transgenic Lucilia sericata larvae that produce and secrete a human growth factor. BMC Biotechnology, 16(1), 30. https://doi.org/10.1186/s12896-016-0263-z
Ma, Q., Fonseca, A., Liu, W., Fields, A. T., Pimsler, M. L., Spindola, A. F., Tarone, A. M., Crippen, T. L., Tomberlin, J. K., & Wood, T. K. (2012). Proteus mirabilis interkingdom swarming signals attract blow flies. The ISME Journal, 6(7), 1356–1366. https://doi.org/10.1038/ismej.2011.210
Maleki-Ravasan, N., Ahmadi, N., Soroushzadeh, Z., Raz, A. A., Zakeri, S., & Dinparast Djadid, N. (2020). New Insights Into Culturable and Unculturable Bacteria Across the Life History of Medicinal Maggots Lucilia sericata (Meigen) (Diptera: Calliphoridae). Frontiers in Microbiology, 11, 505. https://doi.org/10.3389/fmicb.2020.00505
Masiero, F. S., Aquino, M. F. K., Nassu, M. P., Pereira, D. I. B., Leite, D. S., & Thyssen, P. J. (2017). First Record of Larval Secretions of Cochliomyia macellaria (Fabricius, 1775) (Diptera: Calliphoridae) Inhibiting the Growth of Staphylococcus aureus and Pseudomonas aeruginosa. Neotropical Entomology, 46(1), 125–129. https://doi.org/10.1007/s13744-016-0444-4
McDermott, A. M., Cheung, W., Baidouri, H., & Sun, M. (2019). Medicinal Maggot Secretions Promote Wound Healing and have Anti-inflammatory Actions at the Ocular Surface. Investigative Ophthalmology & Visual Science, 60(9), 4831.
Mellanby, K. (1938). Diapause and metamorphosis of the blowfly, Lucilia sericata Meig. Parasitology, 30(3), 392–402. https://doi.org/10.1017/S0031182000025956
Morris, D., Flores, M., Harris, L., Gammon, J., & Nigam, Y. (2023). Larval Therapy and Larval Excretions/Secretions: A Potential Treatment for Biofilm in Chronic Wounds? A Systematic Review. Microorganisms, 11(2), Article 2. https://doi.org/10.3390/microorganisms11020457
Niehaus, F., Eck, J., Schulze, R., & Krohn, M. (2019). Protease for wound conditioning and skin care (Patent RE47528). https://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=12&f=G&l=50&d=PTXT&p=1&S1=((larvae+AND+wound)+AND+debridement)&OS=larvae+AND+wound+and+debridement&RS=((larvae+AND+wound)+AND+debridement)
Novoa-Palomares, F., Salas-Díaz, L., Pérez-Téllez, C., Pinillos-Medina, I., Torres-García, O., & Bello, F. J. (2022). Comparative analysis of the antimicrobial activity of larval secretions and excretions from Calliphora vicina and Sarconesiopsis magellanica (Diptera: Calliphoridae). Biomedica: Revista Del Instituto Nacional De Salud, 42(1), 54–66. https://doi.org/10.7705/biomedica.6067
Omalu, I. C., Egwim, E. C., Abdulraman, K., Eke, S. S., Ibeh, E. O., Pam, V. I., Ubanwa, D. E., Busari, M. B., & Ossai, P. (2016). Characterization of the Blowfly Maggot (Lucilia robineau) Excretion/Saliva Extract. http://repository.futminna.edu.ng:8080/jspui/handle/123456789/2891
Omalu, I., Egwim, E., Abdulraman, K., Ibrahim, S., Hassan, C., Sunday Eke, S., Emeka, U., Aliyu, A., & Boyi, A. (2016). Free Radical Scavenging Activity and Protein Concentration and Profile of the Blowfly Maggot (Lucilia robineau) Excretion/Saliva Extract. British Journal of Pharmaceutical Research, 9, 1–6. https://doi.org/10.9734/BJPR/2016/21475
Owusu, E., Savani, S., & Redfern, R. (2024). In vitro antibacterial activity of medicinal maggot excretions/secretions against staphylococcus epidermidis in the presence of human tears. Investigative Ophthalmology & Visual Science, 65(7), 5603.
Paulchamy, R., Sreeramulu, B., Karuppiah, H., Arumugam, G., & Sundaram, J. (2020). A serine protease-associated lectin in the cytolytic system of blowfly (Chrysomya megacephala) larvae: Evidence and characterization. Archives of Insect Biochemistry and Physiology, 103(1), e21623. https://doi.org/10.1002/arch.21623
Pinilla, Y. T., Moreno-Pérez, D. A., Patarroyo, M. A., & Bello, F. J. (2013). Proteolytic activity regarding Sarconesiopsis magellanica (Diptera: Calliphoridae) larval excretions and secretions. Acta Tropica, 128(3), 686–691. https://doi.org/10.1016/j.actatropica.2013.09.020
Plas, M. J. A. van der, Andersen, A. S., Nazir, S., Tilburg, N. H. van, Oestergaard, P. R., Krogfelt, K. A., Dissel, J. T. van, Hensbergen, P. J., Bertina, R. M., & Nibbering, P. H. (2014). A Novel Serine Protease Secreted by Medicinal Maggots Enhances Plasminogen Activator-Induced Fibrinolysis. PLOS ONE, 9(3), e92096. https://doi.org/10.1371/journal.pone.0092096
Polakovičova, S., Polák, Š., Kuniaková, M., Čambal, M., Čaplovičová, M., Kozánek, M., Danišovič, L., & Kopáni, M. (2015). The effect of salivary gland extract of Lucilia sericata maggots on human dermal fibroblast proliferation within collagen/hyaluronan membrane in vitro: Transmission electron microscopy study. Advances in Skin & Wound Care, 28(5), 221–226. https://doi.org/10.1097/01.ASW.0000461260.03630.a0
Polat, N., Koç, M., Ayhan, H., & Mollahaliloglu, S. (2022). A systematic review of effective bioagent in chronic wounds: The maggot biotherapy pyramid. Ankara Medical Journal, 22, 282–304. https://doi.org/10.5505/amj.2022.43109
Pöppel, A.-K., Kahl, M., Baumann, A., Wiesner, J., Gökçen, A., Beckert, A., Preissner, K. T., Vilcinskas, A., & Franta, Z. (2016). A Jonah-like chymotrypsin from the therapeutic maggot Lucilia sericata plays a role in wound debridement and coagulation. Insect Biochemistry and Molecular Biology, 70, 138–147. https://doi.org/10.1016/j.ibmb.2015.11.012
Rahimi, S., khamesipour, A., Akhavan, A. A., Rafinejad, J., Ahmadkhaniha, R., Bakhtiyari, M., Veysi, A., & Akbarzadeh, K. (2021). The leishmanicidal effect of Lucilia sericata larval saliva and hemolymph on in vitro Leishmania tropica. Parasites & Vectors, 14(1), 40. https://doi.org/10.1186/s13071-020-04543-y
Reid, C. R., Beekman, M., Latty, T., & Dussutour, A. (2013). Amoeboid organism uses extracellular secretions to make smart foraging decisions. Behavioral Ecology, 24(4), 812–818. https://doi.org/10.1093/beheco/art032
Robinson, W. (1935). Allantoin, a Constituent of Maggot Excretions, Stimulates Healing of Chronic Discharging Wounds. The Journal of Parasitology, 21(5), 354–358. https://doi.org/10.2307/3271945
Rodrigues, A. C. J., Bortoleti, B. T. da S., Carloto, A. C. M., Silva, T. F., Concato, V. M., Gonçalves, M. D., Tomiotto-Pelissier, F., Detoni, M. B., Diaz-Roa, A., Júnior, P. I. da S., Costa, I. N., Conchon-Costa, I., Bidoia, D. L., Miranda-Sapla, M. M., & Pavanelli, W. R. (2021). Larval excretion/secretion of dipters of Lucilia cuprina species induces death in promastigote and amastigote forms of Leishmania amazonensis. Pathogens and Disease, 79(6), ftab040. https://doi.org/10.1093/femspd/ftab040
Romeyke, T. (2021). Maggot Therapy as a Part of a Holistic Approach in the Treatment of Multimorbid Patients with Chronic Ulcer. Clinics and Practice, 11(2), 347–357. https://doi.org/10.3390/clinpract11020049
Sandeman, R. M., Feehan, J. P., Chandler, R. A., & Bowles, V. M. (1990). Tryptic and chymotryptic proteases released by larvae of the blowfly, lucilia cuprina. International Journal for Parasitology, 20(8), 1019–1023. https://doi.org/10.1016/0020-7519(90)90044-N
Sanei-Dehkordi, A., Khamesipour, A., Akbarzadeh, K., Akhavan, A. A., Mir Amin Mohammadi, A., Mohammadi, Y., Rassi, Y., Oshaghi, M. A., Alebrahim, Z., Eskandari, S. E., & Rafinejad, J. (2016). Anti Leishmania activity of Lucilia sericata and Calliphora vicina maggots in laboratory models. Experimental Parasitology, 170, 59–65. https://doi.org/10.1016/j.exppara.2016.08.007
Schmidtchen, A., Wolff, H., Rydengård, V., & Hansson, C. (2003). Detection of Serine Proteases Secreted by Lucilia sericata In vitro and During Treatment of a Chronic Leg Ulcer. Acta Dermato-Venereologica, 83(4), 310–311. https://doi.org/10.1080/00015550310016689
Sherafati, J., Dayer, M. S., & Ghaffarifar, F. (2022). Therapeutic effects of Lucilia sericata larval excretion/secretion products on Leishmania major under in vitro and in vivo conditions. Parasites & Vectors, 15(1), 212. https://doi.org/10.1186/s13071-022-05322-7
Sherman, R. A. (2014). Mechanisms of Maggot-Induced Wound Healing: What Do We Know, and Where Do We Go from Here? Evidence-Based Complementary and Alternative Medicine, 2014, e592419. https://doi.org/10.1155/2014/592419
Simmons, S. W. (1935). The bactericidal Properties of Excretions of the Maggot of Lucilia sericata. Bulletin of Entomological Research, 26(4), 559–563. https://doi.org/10.1017/S0007485300036907
Singh, B., Crippen, T. L., Zheng, L., Fields, A. T., Yu, Z., Ma, Q., Wood, T. K., Dowd, S. E., Flores, M., Tomberlin, J. K., & Tarone, A. M. (2015). A metagenomic assessment of the bacteria associated with Lucilia sericata and Lucilia cuprina (Diptera: Calliphoridae). Applied Microbiology and Biotechnology, 99(2), 869–883. https://doi.org/10.1007/s00253-014-6115-7
Tahmasebi, M., Soleimanifard, S., Sanei, A., Karimy, A., & Abtahi, S. M. (2020). A Survey on Inhibitory Effect of Whole-Body Extraction and Secretions of Lucilia sericata’s Larvae on Leishmania major In vitro. Advanced Biomedical Research, 9, 12. https://doi.org/10.4103/abr.abr_56_19
Tamura, T., Cazander, G., Rooijakkers, S. H. M., Trouw, L. A., & Nibbering, P. H. (2017). Excretions/secretions from medicinal larvae (Lucilia sericata) inhibit complement activation by two mechanisms. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 25(1), 41–50. https://doi.org/10.1111/wrr.12504
Tombulturk, F. K., & Kanigur-Sultuybek, G. (2021). A molecular approach to maggot debridement therapy with Lucilia sericata and its excretions/secretions in wound healing. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 29(6), 1051–1061. https://doi.org/10.1111/wrr.12961
Tombulturk, F., Kasap, M., Tuncdemir, M., Polat, E., Sirekbasan, S., Kanli, A., & Kanigur-Sultuybek, G. (2018). Effects of Lucilia sericata on wound healing in streptozotocin-induced diabetic rats and analysis of its secretome at the proteome level. Human & Experimental Toxicology, 37(5), 508–520. https://doi.org/10.1177/0960327117714041
Ulanova, R., Tikhonova, E., & Kravchenko, I. (2020). Bacteria associated with Lucilia sericata larvae reared on fish wastes. Entomologia Experimentalis et Applicata, 168. https://doi.org/10.1111/eea.12918
van der Plas, M. J. A., Dambrot, C., Dogterom-Ballering, H. C. M., Kruithof, S., van Dissel, J. T., & Nibbering, P. H. (2010). Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. The Journal of Antimicrobial Chemotherapy, 65(5), 917–923. https://doi.org/10.1093/jac/dkq042
van der Plas, M. J. A., Jukema, G. N., Wai, S.-W., Dogterom-Ballering, H. C. M., Lagendijk, E. L., van Gulpen, C., van Dissel, J. T., Bloemberg, G. V., & Nibbering, P. H. (2008). Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. The Journal of Antimicrobial Chemotherapy, 61(1), 117–122. https://doi.org/10.1093/jac/dkm407
van der Plas, M. J. A., van der Does, A. M., Baldry, M., Dogterom-Ballering, H. C. M., van Gulpen, C., van Dissel, J. T., Nibbering, P. H., & Jukema, G. N. (2007). Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes and Infection, 9(4), 507–514. https://doi.org/10.1016/j.micinf.2007.01.008
Vistnes, L. M., Lee, R., & Ksander, G. A. (1981). Proteolytic activity of blowfly larvae secretions in experimental burns. Surgery, 90(5), 835–841.
Wang, T.-Y., Wang, W., Li, F.-F., Chen, Y.-C., Jiang, D., Chen, Y.-D., Yang, H., Liu, L., Lu, M., Sun, J.-S., Gu, D.-M., Wang, J., & Wang, A.-P. (2020). Maggot excretions/secretions promote diabetic wound angiogenesis via miR18a/19a—TSP-1 axis. Diabetes Research and Clinical Practice, 165, 108140. https://doi.org/10.1016/j.diabres.2020.108140
Wilson, M. R., Nigam, Y., Jung, W., Knight, J., & Pritchard, D. I. (2016). The impacts of larval density and protease inhibition on feeding in medicinal larvae of the greenbottle fly Lucilia sericata. Medical and Veterinary Entomology, 30(1), 1–7. https://doi.org/10.1111/mve.12138
Yuan, Y., Zhang, Y., Fu, S., Crippen, T. L., Visi, D. K., Benbow, M. E., Allen, M. S., Tomberlin, J. K., Sze, S.-H., & Tarone, A. M. (2016). Genome Sequence of a Proteus mirabilis Strain Isolated from the Salivary Glands of Larval Lucilia sericata. Genome Announcements, 4(4), e00672-16. https://doi.org/10.1128/genomeA.00672-16
Zahra Sadat Amiri, Akbarzadeh, K., Douraghi, M., Abdi, K. M., Abbas Aghaei Afshar, Jasem ghaffari, Razieh shabani Kordshouli, Akbari, M., & Rafinejad, J. (2020). Effectiveness of maggot extractions and secretion (E/S) of Lucilia sericata in reducing wound surface in experimental scalding burn injury. Nusantara Bioscience, 13(1). https://doi.org/10.13057/nusbiosci/n130102
Zhang, Y., Sass, A., Van Acker, H., Wille, J., Verhasselt, B., Van Nieuwerburgh, F., Kaever, V., Crabbé, A., & Coenye, T. (2018). Coumarin Reduces Virulence and Biofilm Formation in Pseudomonas aeruginosa by Affecting Quorum Sensing, Type III Secretion and C-di-GMP Levels. Frontiers in Microbiology, 9. https://www.frontiersin.org/articles/10.3389/fmicb.2018.01952